MR Spectroscopy
Potential Uses Beyond the Brain in Veterinary Medicine

Christopher Warrington, DVM
Resident, Medical Imaging
University of Minnesota
Veterinary Medical Center
In vivo MR Spectroscopy

• First reported in the brain in animal models in late 1970s
 o Phosphorus-31 (31P)
 o Measured metabolism
 ▪ Adenosine triphosphate (ATP)
 ▪ Phosphocreatine (PCr)
 ▪ Inorganic Phosphate (Pi)

• First in vivo 31P MRS in humans reported in 1981
 o Primary focus for MRS during the 1980s was on 31P
 o Clinical applications limited
 ▪ Low spatial resolution and SNR
 ▪ Requires large voxel volume (>30 cm³)

Barker PB, et al., 2010.
1H-MR Spectroscopy

- 1983 – first 1H-MRS in rat brain (8.5T)
- 1985 – first 1H-MRS in human brain (1.5T)
- Advantages over 31P
 - High natural abundance
 - Higher SNR and spatial resolution
 - Uses same hardware as conventional MRI
 - Smaller voxel volumes (1-8 cm3 at 1.5T)
- Primary MRS technique for human brain metabolism since mid-1980s

Barker PB, et al., 2010.
Spectrum Acquisition

- Define voxel in tissue of interest
 - Single voxel
 - Multi-voxel
- Proton signal of metabolites within voxel used to produce the image
- Chemical shift (resonance frequency) plotted on x-axis (ppm)
- Relative metabolite concentrations within voxel plotted on y-axis
Normal Brain Spectrum

Prostate Spectroscopy

- Relatively low sensitivity and specificity of prostate cancer diagnosis with conventional imaging (US, MRI) in human medicine
 - Various prostate pathologies can mimic cancer
 - Chronic prostatitis
 - Scar tissue
 - Hemorrhage
- Studies report increased sensitivity and specificity with addition of MRS to US, MRI, biopsy, and/or protein-specific antigen (PSA) test
- Coil options
 - Endorectal coil
 - External phased-array coil

Barker PB, et al., 2010.
Normal Prostate Spectrum

- Normal prostate contains high levels of citrate (Cit)
 - Strong peak at 2.6 ppm (usually coupled)
- Other prominent peaks
 - Creatine (Cr) at 3.0 ppm
 - Choline (Cho) at 3.2 ppm
 - Myo-Inositol (Ino) at 3.6 ppm
 - Marker for altered membrane metabolism
 - +/- Polyamine (spermine) at 3.1 ppm
- Metabolite ratio
 - Based on peak area
 - Cho + Cr / Cit (CC/C) or Cho/Cit
 - Normal CC/C = 0.22 +/- 0.013 (Jung JA, et al., 2004)

Barker PB, et al., 2010.
Abnormal Prostate Spectroscopy

- **Benign Prostatic Hyperplasia (BPH)\(^1\)**
 - Increased citrate production by secretory epithelial cells
 - ↑ Cit peak, therefore ↓ CC/C ratio
 - Spectrum can look very similar to normal prostate

- **Prostatitis**
 - Disagreement between studies
 - ↑ Cit, which decreases to normal following treatment\(^2\)

\(^1\)Garcia-Segura JM, et al., 1999.

Abnormal Prostate Spectroscopy

- **Benign Prostatic Hyperplasia (BPH)**
 - Increased citrate production by secretory epithelial cells
 - ↑ Cit peak, therefore ↓ CC/C ratio
 - Spectrum can look very similar to normal prostate

- **Prostatitis**
 - Disagreement between studies
 - ↑ Cit, which decreases to normal following treatment
 - ↓ Cit, to the point of mimicking prostate cancer

Abnormal Prostate Spectroscopy

- Prostatic adenocarcinoma
 - Normal glandular epithelial cells replaced by cancer = ↓ Cit
 - Increased cell membrane turnover = ↑ Cho
 - ↑ CC/C ratio, corresponding to degree of malignancy
 - May also see ↑ Ino
 - Should be < Cr peak in normal and BPH
 - Cr/Ino ratio < 1.0 reported as secondary indicator to discriminate between BPH and carcinoma

1 Barker PB, et al., 2010.
2 Garcia-Segura JM, et al., 1999.
Grading Scale for Malignancy

Jung JA, et al., 2004
Potential Use in Veterinary Medicine?

- Possible
 - Prostate size – age and breed variation
 - Volume averaging with surrounding fat
 - Castrated vs. intact
 - Lower citrate concentrations vs. humans¹
 - Cost
 - MRI not routine to evaluate prostate
 - Accessibility of prostate for imaging and FNA/biopsy
 - More difficult in humans (intrapelvic)
 - Questionable differentiation between prostatitis and cancer
 - Needs further investigation

Breast Spectroscopy

- Third-most common clinical use of MRS in human medicine
- Characterize breast lesions and determine malignancy
 - Added specificity to conventional MRI in defining malignant lesions
- Hallmark peak is Cho at 3.2 ppm
 - Increasing Cho peak height correlates with increased malignancy
 - Elevated Cho more frequently seen in malignant than benign lesions

Weinstein S, et al., 2010.

Image from Bartella L, et al., 2007.
Breast Spectroscopy

- Third-most common clinical use of MRS in human medicine
- Characterize breast lesions and determine malignancy
 - Added specificity to conventional MRI in defining malignant lesions
- Hallmark peak is Cho at 3.2 ppm
 - Increasing Cho peak height correlates with increased malignancy
 - Elevated Cho more frequently seen in malignant than benign lesions

Weinstein S, et al., 2010.

Image from Bartella L, et al., 2007.
Breast Spectroscopy

• Third-most common clinical use of MRS in human medicine
• Characterize breast lesions and determine malignancy
 - Added specificity to conventional MRI in defining malignant lesions
• Hallmark peak is Cho at 3.2 ppm
 - Increasing Cho peak height correlates with increased malignancy
 - Elevated Cho more frequently seen in malignant than benign lesions

Weinstein S, et al., 2010.

Image from Bartella L, et al., 2007.
Potential Use in Veterinary Medicine?

- Doubtful
 - Size and periphery of mammary glands
 - Volume averaging with surrounding fat
 - Periphery of palpable masses/nodules conducive to FNA or biopsy without imaging guidance
 - Cost
 - Potential for identification of metastasis?
 - ↑ Cho peak not specific for mammary carcinoma
 - No metabolite peak specific to mammary-origin cells
Musculoskeletal Spectroscopy

• Relatively new procedure in human medicine
 o Limited reports in the literature
 o First report ~ 2000
• Mainly utilized in research at this time
• Choline and creatine peaks are present in metabolically active muscle
• High lipid and water peaks, which may obscure smaller adjacent peaks
• ↑ Cho peak with active tumors
 o Malignant >>> Benign
 o Active benign lesions – neurofibroma and stress fractures – can show Cho peak
 o Can see discrete Cho peak and increased Cr peak post-operatively
• Multi-voxel can be used to assess margins for extent/infiltration of mass

Musculoskeletal Spectroscopy

“Normal” muscle spectrum - myocutaneous flap post- tumor resection

Musculoskeletal Spectroscopy

Low-grade sarcoma
Musculoskeletal Spectroscopy

Potential Use in Veterinary Medicine?

- Possible
 - Size
 - Larger muscles – accommodate voxel
 - Smaller muscles – volume averaging
 - Determine malignancy of musculoskeletal masses (↑ Cho)
 - Differentiate recurrence of tumor vs. treatment effects
 - Needs further investigation
Liver Spectroscopy

- Relatively new MRS technique in human medicine
- Characterize diffuse liver disease
- Quantify lipid content in the liver
- Diagnose malignancy (↑ Cho)
- High water and lipid peaks may obscure smaller peaks
- Technical limitations
 - Motion (primarily respiratory)
 - Low SNR
 - Volume averaging

Motion Artifacts

- Diffuse liver disease
 - Quality may not be as affected
 - Specific voxel location not as important
 - Avoid large vessels and edges of liver lobes

- Focal liver disease
 - Large masses – majority of sampling may be representative
 - Small masses/nodules – volume averaging

- Motion correction
 - Manual/automatic post-processing
 - Cannot correct for inclusion of different tissues
 - Respiratory gating
 - ↓ SNR due to shorter sequence
 - Slightly different sample volume with each breath

Diffuse Liver Disease

- Hepatic Steatosis (Fatty Liver)
 - Multiple lipid peaks in liver
 - Methyl (-CH$_3$) at 0.9-1.1 ppm
 - Methylene (-CH$_2$) at 1.3-1.6 ppm
 - Total lipid/water ratio increases with steatosis grade (0 to 3)
- Metabolite changes indicative of inflammation or fibrosis have not been clearly established

Hepatic Steatosis (Fatty Liver)

Focal Liver Disease

- Hepatocellular Carcinoma
 - ↑ Cho relative to lipids
- Ability to distinguish benign and malignant tumors from normal liver parenchyma has not been established
- Relatively large amounts of choline-containing compounds may occur in normal liver
- More susceptible to motion artifact

Potential Use in Veterinary Medicine?

- Possible
 - Hepatic lipidosis
 - Different fat content in animal liver vs. human liver?
 - Varying “baseline” fat content- lean vs. obese? dog vs. cat? breed differences?
 - Diffuse liver diseases
 - Regenerative nodules vs. malignant tumors
 - Cost
 - Anesthetic drug effects on liver MRS?
 - Liver size
 - Motion artifacts
Summary

• Human medicine
 o MRS routinely used as a diagnostic tool with conventional MRI
 o Decades of research and experience
 o Higher strength MRI units allow ↑ SNR and resolution

• Veterinary Medicine
 o Virtually no MRS data to this point
 o Technically challenging due to small patient size
 o Cost
 o Potential areas of benefit
 o Improving technology and availability of higher strength MRI
References

References

Questions?